Tropical Geometry and Commutative Algebra for Semirings

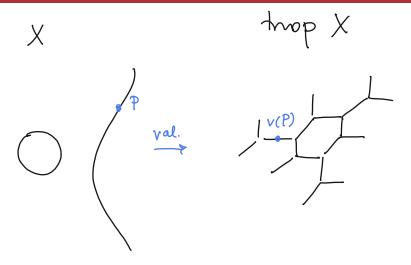
Kalina Mincheva

joint work with D. Joó, N. Friedenberg

Tulane University

29 October, 2021

Introduction: Tropical Geometry



Goal: Understand X by understanding trop(X).

Algebraic Geometry

v:
$$k \rightarrow \mathbb{R} \cup \{\infty\} = (\mathbb{T}, +, \times)$$

 $V(ab) = V(a) + V(b)$ min $+_{\mathbb{R}}$
 $V(a+b) \ge \min \{v(a), v(b)\}$
 $V(0) = \infty$

Commutative Algebra:

ideal
$$I \subseteq k[x_1, \dots x_n]$$

 $I \ni f = \sum c_u \mathbf{x}^u$

Tropical Algebra:

trop
$$(f) = \min \{ v(cu) + x. u \}$$

trop $(f) \in \mathbb{T}[x_1 - x_1]$
trop $(f) = \{ trop (f) | \forall f \in I \}$

Geometry:

$$V(I) = \{ P \in k^n : f(P) = 0, \forall f \in I \}$$

Tropical Geometry:

trop(V(I)) =

P∈Th (f(P) is either as or wind

Motivation

- Applications to algebraic geometry:
 - Moduli spaces of curves
 - Enumerative geometry (Gromov-Witten invariants)
 - Brill-Noether theory
 - Mirror Symmetry
- Outside algebraic geometry:
 - Math biology (phylogentic trees)
 - Economics
 - Neural Networks
 - etc.

Pros/Cons of these methods

Pros:

New set of combinatorial tools.

Cons:

- Lose algebraic information (this is a degeneration)
- Hard to work in higher dimensions (beyond curves)

Sub-Goal: Salvage enough algebra and create an intrinsic theory.

Remarks

ullet ${\mathbb T}$ is additively idempotent

$$\forall a \in T$$
, $a + a = a$.

• There is no "-" (semifield)

• $\mathbb{T}[x_1,\ldots,x_n]$ is not cancellative, not UFD, ...

We will try to understand:

Quotients (coordinate rings of affine varieties)

Prime ideals(?)

Dimension

Ideals and Congruences

In the ring case:

• Let I be an ideal in a ring R, we define $C_I = \langle (a,0), \forall a \in I \rangle$, then

$$R/I := R/C_I$$
.

One-to-one correspondence of between I and CI

In the semiring case:

pnot the case

T[x,y]/x~y===T[x].

ker of <x~y>

nothing other than Of is note of

Let
$$a - b, c - d \in I$$
, i.e. (a, b) and $(c, d) \in C_I$
Note that $(a, b) \cdot (c, d) \in C_I$
 $\iff (a - b, 0) \cdot (c - d, 0) \in C_I$
 $\iff (ac + bd - (ad + bc), 0) \in C_I$

Let
$$a - b, c - d \in I$$
, i.e. (a, b) and $(c, d) \in C_I$
Note that $(a, b) \cdot (c, d) \in C_I$
 $\iff (a - b, 0) \cdot (c - d, 0) \in C_I$
 $\iff (ac + bd - (ad + bc), 0) \in C_I$
 $\iff ac + bd - (ad + bc) \in I$

Let
$$a - b, c - d \in I$$
, i.e. (a, b) and $(c, d) \in C_I$
Note that $(a, b) \cdot (c, d) \in C_I$
 $\iff (a - b, 0) \cdot (c - d, 0) \in C_I$
 $\iff (ac + bd - (ad + bc), 0) \in C_I$
 $\iff (ac + bd, ad + bc) \in C_I$

Let
$$a - b, c - d \in I$$
, i.e. (a, b) and $(c, d) \in C_I$
Note that $(a, b) \cdot (c, d) \in C_I$
 $\iff (a - b, 0) \cdot (c - d, 0) \in C_I$
 $\iff (ac + bd - (ad + bc), 0) \in C_I$
 $\iff (ac + bd, ad + bc) \in C_I$

Definition

Let C be a congruence on R, and let $\alpha = (a, b)$ and $\beta = (c, d)$. The **twisted product** $\alpha * \beta = (a, b) * (c, d) = (ac + bd, ad + bc)$.

Primes

Let R be a ring or a semiring.

P is a **prime ideal** of *R* if whenever $ab \in P$ then $a \in P$ or $b \in P$.

Definition (アル17)

P is a **prime congruence** of *R* if whenever $\alpha * \beta \in P$ then $\alpha \in P$ or $\beta \in P$.

Primes

Let R be a ring or a semiring.

P is a **prime ideal** of *R* if whenever $ab \in P$ then $a \in P$ or $b \in P$.

Definition

P is a **prime congruence** of *R* if whenever $\alpha * \beta \in P$ then $\alpha \in P$ or $\beta \in P$.

Theorem (Joó-M'17)

If R is an additively idempotent semiring, then P is a prime congruence if and only if R/P is cancellative and P is irreducible.

$$ab = cb$$
 $P = A \cap B$
 \Rightarrow eiteur $b = 0$ \Rightarrow $P = A$ or $P = B$.
or $a = c$.

Primes

Let R be a ring or a semiring.

P is a **prime ideal** of *R* if whenever $ab \in P$ then $a \in P$ or $b \in P$.

Definition

P is a **prime congruence** of *R* if whenever $\alpha * \beta \in P$ then $\alpha \in P$ or $\beta \in P$.

Theorem (Joó-M'17)

If R is an additively idempotent semiring, then P is a prime congruence if and only if R/P is cancellative and P is irreducible.

Theorem (Joó-M'17)

If R is an additively idempotent semiring, then P is a prime congruence if and only if R/P is cancellative and totally ordered.

Primes on $\mathbb{B}[x_1,\ldots,x_n]$ and $\mathbb{T}[x_1,\ldots,x_n]$

- The primes on the polynomial semiring or Laurent polynomial semiring correspond to matrices.
- They are related to monomial orders.

Primes on $\mathbb{B}[x_1,\ldots,x_n]$ and $\mathbb{T}[x_1,\ldots,x_n]$

- The primes on the polynomial semiring or Laurent polynomial semiring correspond to matrices.
- They are related to monomial orders.

$$\mathbb{B} = \{0, 1\}$$

Example

(+(-0.

Let $U = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}$, that defines the prime P(U) in $\mathbb{B}[x^{\pm 1}, y^{\pm 1}, z^{\pm 1}]$.

We would like to compare the following monomials in $\mathbb{B}[x^{\pm 1}, y^{\pm 1}, z^{\pm 1}]/P(U)$. Let $m_1 = x^2y^3z$ and $m_2 = x^3yz^2$.

$$\mathbf{n}_1 = \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}, \mathbf{n}_2 = \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} \text{ and } U\mathbf{n}_1 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}, U\mathbf{n}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

$$U\mathbf{n}_1 - U\mathbf{n}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix} - \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$
, hence $m_1 > m_2$.

Dimension theory

We are interested in the case when R is an additively idempotent semiring.

Definition Jw 17

The (Krull) **dimension** of R is the number of strict inclusions of prime congruences in a chain of maximal length.

Dimension theory

We are interested in the case when R is an additively idempotent semiring.

Definition

The (Krull) **dimension** of R is the number of strict inclusions of prime congruences in a chain of maximal length.

The semirings we are interested in, e.g. $\mathbb{T}[x_1,\ldots,x_n]$ are not catenary!

Dimension theory

We are interested in the case when R is an additively idempotent semiring.

Definition

The (Krull) **dimension** of R is the number of strict inclusions of prime congruences in a chain of maximal length.

The semirings we are interested in, e.g. $\mathbb{T}[x_1,\ldots,x_n]$ are not catenary!

Example

$$\dim \mathbb{B} = 0; \quad \dim \mathbb{T} = 1; \quad \dim \mathbb{B}[x] = 1; \quad \dim \mathbb{T}[x_1, \dots, x_n] = n + 1$$

We can do these via explicit computation.

dim t=1 an Ily when a + OT

Dimension Theory

Theorem (Joó-M'18)

Let R be an additively idempotent semiring, then

$$\dim R[x_1,\ldots,x_n]=\dim R+n.$$

The proof goes by passing to the semifield of fractions of R, which has the same dimension as R!

Dimension Theory

Theorem (Joó-M'18)

Let R be an additively idempotent semiring, then

$$\dim R[x_1,\ldots,x_n]=\dim R+n.$$

The proof goes by passing to the semifield of fractions of R, which has the same dimension as R!

Remark

If R is a Noetherian ring, then dim $R[x] = \dim R + 1$. Otherwise, dim $R + 1 \le \dim R[x] \le 2\dim R + 1$.

Dimension Theory

Theorem (Joó-M'18)

Let R be an additively idempotent semiring, then

$$\dim R[x_1,\ldots,x_n]=\dim R+n.$$

The proof goes by passing to the semifield of fractions of R, which has the same dimension as R!

Remark

If R is a Noetherian ring, then dim $R[x] = \dim R + 1$. Otherwise, dim $R + 1 \le \dim R[x] \le 2\dim R + 1$.

Theorem (F. Alarcón and D. Anderson'94)

If we define dimension in terms of ideals then dim $\mathbb{B}[x] = \infty$.

Towards Geometry: Tropical vanishing locus (1)

Let $I \in \mathbb{T}[x_1, \dots, x_n]$ be an **ideal** then $V(I) = \{a \in \mathbb{T}^n : f(a) \text{ attains its maximum at least twice}, \forall f \in I\}.$ Let $C \in \mathbb{T}[x_1, \dots, x_n]^2$ be a **congruence** then $V(C) = \{a \in \mathbb{T}^n : f(a) = g(a), \forall (f, g) \in C\}.$ $f \sim g$

Towards Geometry: Tropical vanishing locus (1)

Let $I \in \mathbb{T}[x_1, \dots, x_n]$ be an **ideal** then

$$V(I) = \{a \in \mathbb{T}^n : f(a) \text{ attains its maximum at least twice}, \forall f \in I\}.$$

Let $C \in \mathbb{T}[x_1, \dots, x_n]^2$ be a **congruence** then

$$V(C) = \{a \in \mathbb{T}^n : f(a) = g(a), \forall (f,g) \in C\}.$$

Question: What can we say about V(P) when P is a prime ideal or congruence of $\mathbb{T}[x_1,\ldots,x_n]$?

Towards Geometry: Tropical vanishing locus (2)

Theorem (Joó-M'21)

Let C be a prime **congruence** or a prime **ideal** on $\mathbb{T}[x_1,\ldots,x_n]$. Then:

$$V(P) = \emptyset$$
 or $V(P) = point$.

if P is a prime ideal d P is "mopical" then P = T[x = xu].

Convergent power series

Let M be a toric monoid. Let \mathcal{O}_P denote the set of "convergent power series" at the point P, i.e. P is a prime congruence and \mathcal{O}_P is a subset of $\left\{f = \sum_{u \in M} c_u \chi^u, c_u \in S\right\}$.

Theorem (Friedenberg-M'21)

If $P \in \mathbb{T}[M]$ with trivial kernel, then

$$\dim \mathcal{O}_P = \dim \mathbb{T}[M].$$

We an inequality for subsemifields of ${\mathbb T}$ and the formula involves the rank of the residue field.

Towards Geometry (2)

For an affine algebraic variety:

$$\dim V(I) = \dim k[x_1, \ldots, x_n]/I.$$

The Structure Theorem for Tropical Geometry:

$$\dim V(I) = \dim \operatorname{trop} V(I).$$

polyh. complex

Towards Geometry (2)

For an affine algebraic variety:

$$\dim V(I) = \dim k[x_1, \ldots, x_n]/I.$$

The Structure Theorem for Tropical Geometry:

$$\dim V(I) = \dim \operatorname{trop} V(I).$$

Question: Do we have something like this tropically, i.e.

dim trop
$$V(I) = \dim \mathbb{T}[x_1, \dots, x_n]$$
 ????.

Towards Geometry (2)

For an affine algebraic variety:

$$\dim V(I) = \dim k[x_1, \ldots, x_n]/I.$$

The Structure Theorem for Tropical Geometry:

$$\dim V(I) = \dim \operatorname{trop} V(I).$$

Question: Do we have something like this tropically, i.e.

dim trop
$$V(I) = \dim \mathbb{T}[x_1, \ldots, x_n]/???$$
.

Yes!

Bend Congruences

```
Let I be an ideal of k[x_1, ... x_n], then trop(I) = \{trop(f) : f \in I\} \subseteq \mathbb{T}[X_1, ... X_n]

Let J be an ideal of \mathbb{T}[x_1, ... x_n]

bend(\mathcal{G}) = \{g \sim g_{\hat{I}} : i \in supp(g)\}

bend(J) = \{bend(g) : g \in J\}

\uparrow bend congruences, due to Giansiracusa<sup>2</sup>'16
```

Bend Congruences

```
Let I be an ideal of k[x_1, \ldots x_n], then trop(I) = \{trop(f) : f \in I\}

Let J be an ideal of \mathbb{T}[x_1, \ldots x_n]

bend(f) = \{g \sim g_{\hat{I}} : i \in supp(g)\}

bend(J) = \{bend(g) : g \in J\}

\uparrow bend congruences, due to Giansiracusa<sup>2</sup>'16
```

Example

$$g = x + y + z$$
, then $bend(g) = \{g \sim x + y \sim x + z \sim y + z\}$.

Towards Geometry (3)

The \mathbb{T} -points of $Spec\mathbb{T}[x_1,\ldots,x_n]/bend(trop(I))$ are trop(V(I)).

Towards Geometry (3)

The \mathbb{T} -points of $Spec\mathbb{T}[x_1,\ldots,x_n]/bend(trop(I))$ are trop(V(I)).

Theorem

Let I be an ideal of $k[x_1, ... x_n]$, then

$$dim \ \underline{trop} \ V(I) = dim \Big(\mathbb{T}[x_1, \dots, x_n] / bend(trop(I)) \Big) - 1.$$

Recall that $\dim \mathbb{T}=1$.

Remark

Ideals of the type $\underline{trop}(I) \subseteq \mathbb{T}[x_1, \dots, x_n]$ are referred to as "tropicalized ideals". They are a proper subset of the set of **tropical ideals**, introduced by Maclagan-Rincón'17.

- A tropical ideal $J \subseteq \mathbb{T}[x_1, \dots, x_n]$ is almost never finitely generated (neither is trop(I) for $I \in k[x_1, \dots x_n]$).
- The congruence bend(J) is also almost never finitely generated.
- However, $trop(V(I)) = V(trop(I)) = \bigcap_{f \in T} V(trop(f))$, where T is finite.
- HF(I) = HF(trop(I)), where HF is the Hilbert function.

Remark

Ideals of the type $trop(I) \subseteq \mathbb{T}[x_1, \dots, x_n]$ are referred to as "tropicalized ideals". They are a proper subset of the set of **tropical ideals**, introduced by Maclagan-Rincón'17.

- A tropical ideal $J \subseteq \mathbb{T}[x_1, ..., x_n]$ is almost never finitely generated (neither is trop(I) for $I \in k[x_1, ..., x_n]$).
- The congruence bend(J) is also almost never finitely generated.
- However, $trop(V(I)) = V(trop(I)) = \bigcap_{f \in T} V(trop(f))$, where T is finite.
- HF(I) = HF(trop(I)), where HF is the Hilbert function.

The degree of the Hilbert Polynomial agrees with the dimension of the polyhedral complex and the Krull dimension we introduced!

Thank you for your attention!